23 research outputs found

    Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle

    Get PDF
    Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought

    The ATLAS fast tracKer system

    Get PDF
    The ATLAS Fast TracKer (FTK) was designed to provide full tracking for the ATLAS high-level trigger by using pattern recognition based on Associative Memory (AM) chips and fitting in high-speed field programmable gate arrays. The tracks found by the FTK are based on inputs from all modules of the pixel and silicon microstrip trackers. The as-built FTK system and components are described, as is the online software used to control them while running in the ATLAS data acquisition system. Also described is the simulation of the FTK hardware and the optimization of the AM pattern banks. An optimization for long-lived particles with large impact parameter values is included. A test of the FTK system with the data playback facility that allowed the FTK to be commissioned during the shutdown between Run 2 and Run 3 of the LHC is reported. The resulting tracks from part of the FTK system covering a limited η-ϕ region of the detector are compared with the output from the FTK simulation. It is shown that FTK performance is in good agreement with the simulation. © The ATLAS collaboratio

    Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial: study protocol for a multicentre international trial of cardiac output-guided fluid therapy with low-dose inotrope infusion compared with usual care in patients undergoing major elective gastrointestinal surgery.

    Get PDF
    INTRODUCTION: Postoperative morbidity and mortality in older patients with comorbidities undergoing gastrointestinal surgery are a major burden on healthcare systems. Infections after surgery are common in such patients, prolonging hospitalisation and reducing postoperative short-term and long-term survival. Optimal management of perioperative intravenous fluids and inotropic drugs may reduce infection rates and improve outcomes from surgery. Previous small trials of cardiac-output-guided haemodynamic therapy algorithms suggested a modest reduction in postoperative morbidity. A large definitive trial is needed to confirm or refute this and inform widespread clinical practice. METHODS: The Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial is a multicentre, international, parallel group, open, randomised controlled trial. 2502 high-risk patients undergoing major elective gastrointestinal surgery will be randomly allocated in a 1:1 ratio using minimisation to minimally invasive cardiac output monitoring to guide protocolised administration of intravenous fluid combined with low-dose inotrope infusion, or usual care. The trial intervention will be carried out during and for 4 hours after surgery. The primary outcome is postoperative infection of Clavien-Dindo grade II or higher within 30 days of randomisation. Participants and those delivering the intervention will not be blinded to treatment allocation; however, outcome assessors will be blinded when feasible. Participant recruitment started in January 2017 and is scheduled to last 3 years, within 50 hospitals worldwide. ETHICS/DISSEMINATION: The OPTIMISE II trial has been approved by the UK National Research Ethics Service and has been approved by responsible ethics committees in all participating countries. The findings will be disseminated through publication in a widely accessible peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: ISRCTN39653756.The OPTIMISE II trial is supported by Edwards Lifesciences (Irvine, CA) and the UK National Institute for Health Research through RMP’s NIHR Professorship

    Identification of large selective sweeps associated with major genes in cattle.

    Full text link
    Selection for new favorable variants can lead to selective sweeps. However, such sweeps might be rare in the evolution of different species for which polygenic adaptation or selection on standing variation might be more common. Still, strong selective sweeps have been described in domestic species such as chicken lines or dog breeds. The goal of our study was to use a panel of individuals from 12 different cattle breeds genotyped at high density (800K SNPs) to perform a whole-genome scan for selective sweeps defined as unexpectedly long stretches of reduced heterozygosity. To that end, we developed a hidden Markov model in which one of the hidden states corresponds to regions of reduced heterozygosity. Some unexpectedly long regions were identified. Among those, six contained genes known to affect traits with simple genetic architecture such as coat color or horn development. However, there was little evidence for sweeps associated with genes underlying production traits

    Developmental change of T-type Ca2+ channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia

    No full text
    Neonatal chromaffin cells of the adrenal medulla (AM) are intrinsic chemoreceptors that secrete catecholamines in response to hypoxia, thus contributing to fetal adaptation to extrauterine life. In most mammals studied, oxygen sensitivity of AM cells disappears a few days after birth, possibly due to innervation of the adrenal gland by the cholinergic fibres of the splanchnic nerve (∼postnatal day 7 in the rat). The mechanisms underlying these homeostatic changes in chromaffin cells are unknown. Low voltage-activated, T-type, Ca2+ channels regulate cell excitability and their expression is up-regulated by hypoxia. Hence, we hypothesized that these channels contribute to the developmental changes in the chemoreceptive properties of AM chromaffin cells. Using electrophysiological, immunocytochemical and molecular biology methodologies we show here that neonatal AM chromaffin cells express T-type Ca2+ channels (of α1H or Cav3.2 sub-type) and that the function of these channels is necessary for catecholamine release in response to acute hypoxia. T-type Ca2+ channel expression, as well as chromaffin cell responsiveness to hypoxia, decrease with postnatal maturation. Adult chromaffin cell sensitivity to hypoxia reappears after AM denervation in parallel with the recruitment of T-type Ca2+ channels. These observations indicate that T-type Ca2+ channels are essential for the acute response of chromaffin cells to hypoxia and help explain the disappearance of O2 sensitivity in adult AM chromaffin cells. Our results may also be relevant for understanding the pathogenesis of disorders associated with chronic hypoxia or maternal nicotine consumption
    corecore